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Abstract
This paper introduces a new theoretical formulation based on a composition
method and a statistical discretization approach by matrical block. Anisotropic
properties and boundary conditions are considered, introducing the analytical
bounds expressions of the effective dielectric constants in the limit of the long-
wavelength regime for an idealized superlattice (SL) possessing two directions
of periodicity (2D-SL). Such a SL can be described as a multilayer array of
alternating cells, (N × M) rectangular dielectric bars, allowing the structure to
be shaped as a function of the dielectric constants of each of the anisotropic
constituents. It is worth noting that in the simplified case of a 2D-SL made of
only two different isotropic materials showing off the same periodicity in both
directions, our general matrix formulation, due to the alternative composition
laws, leads to the well-established results called, respectively, ‘Wiener’s and
Lichtenecker’s bounds’ regarding the dielectric constant. This new formalism
refashions the concept of bounds of effective dielectric tensors and the notion
of form birefringence applied to 2D-SL, with relevant (N × M) rectangular
anisotropic columns for arbitrary symmetries in the low-frequency model.

PACS numbers: 78.67.Pt, 77.22.Ch, 78.20.Fm, 77.55.+f

1. Introduction and problem definition

Historically, the effective properties (dielectric constant, magnetic permeability, thermal or
electrical conductivity, diffusivity) ascribed to composite materials have proved to be of great
interest [1–3]. These studies address the issues in classical physics of effective properties of
heterogeneous composite media. These materials are considered heterogeneous when the scale
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of heterogeneity is much greater than the atomic scale, but much less than the relevant macro-
scale. Sometimes, the macroscopic response of such materials is not anywhere in between
the reponses of the pure homogeneous constituents. Several methods have been developed
(for example, by Lichtenecker [4, 5], by Hashin and Shtrikman [6] based on a variational
principle [7], by Bergman [3], and others) to cope with a convenient approach considering the
bounds of the effective dielectric constants. Most often, the main types of methods directed
to obtaining approximate bounds of dielectric constants are namely statistical discretization
methods or integral formulations.

Considering particular heterostructures’ topology, such heterogeneous materials can take
the form of periodic generalized superlattices (SLs) with periodicity along some directions [8].
A generalized nD-SL (n is the number of directions presenting periodicity) can be considered
as an arrangement of alternate regions of various materials with respective dimensions. We
consider the limit of small-sized SL’s regions where any field change remains negligible
over each respective region (static field approximation). Then, as the optical wavelength is
much larger than the different periods of the SL (long-wavelength regime), the nD-SL can
behave as a homogeneous medium, whose physical properties are determined by the so-called
effective parameters. Moreover, when the energy of light is small compared to the gap of
materials, we can neglect the modification of the absorption spectra near the gap due to the
quantum confinement effects. The effective parameters are usually inferred from relevant
particular averages on the parameters of the constituents. As an example, 1D-SL (n = 1)
can be considered as stacks made up of alternating layers of different constituents. In such
a specific 1D-SL optics case, an anisotropy property of the permittivity tensor, called form
birefringence [9, 10], occurs in sundry multiple 1D-SL, although neither of them is anisotropic.
The significant development of integrated optoelectronic heterostructure components, based
on the form birefringence and made up of semiconductors such as GaAs, AlAs and their alloys,
depends increasingly on new modelling tools. As numerous integrated optic devices rely upon
the form birefringence (optical waveguides [11, 12], coherence modulators [13, 14], TE–TM
conversion filters [15, 16], and so on), a new general analytical frame of the form birefringence
in nD-SL provides an interesting guide for their study. In the case of heterostructure 1D-SL
composed of layers of arbitrary symmetry, the effective tensors of dielectric constants [17–19],
elastic constants [17, 20, 21], photoelastic constants [17] and electro-optic constants [19, 22]
have been calculated so as to predict the behaviour. Regarding 2D-SL, such a topology can
be attributed with an array of alternating (N × M) dielectric bar-like slabs.

The model proposed herein presents a suitable discretization method by matrical block
and deals with a SL with two directions of periodicity (2D-SL), brought down to an array
of alternating cells, (N × M) rectangular dielectric columns; symbols M and N represent
the number of different anisotropic materials, respectively, along the x3-direction and the
x1-direction: x1 and x3 represent the two directions perpendicular to the x2-direction of columns’
cells (figure 1). Then, a general matrix formulation, based on an alternative composition
method, is shaped to define the general analytical bounds expressions of the effective dielectric
constants, such topologic structures being made of anisotropic columns of arbitrary symmetry.
Considering a general 2D-SL in an orthogonal coordinate system (xi, i = 1–3), the schematic
diagram of a 2D-SL featuring NM different constituents in the space is depicted in figure 1.
According to figure 2, the symbols u and c describe the lines and columns of the 2D-SL,
respectively. The quantities L

x1
[c] =∑N

u=1 l
u x1
[c] (with the adopted notation [c] equivalent to the

condition {∀c fixed integer, c ∈ [1–M]} and the notation u x1 ascribed to the information uth
line in the x1-direction) and L

x3
[u] = ∑M

c=1 l
c x3
[u] (with [u] equivalent to the condition {∀u fixed

integer, u ∈ [1–N]} and c x3 attributed to the cth column in the x3-direction) represent the
periods of such general structures (N �= M) along the x1- and x3-directions, respectively. The
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Figure 1. Layout of a generic superlattice (2D-SL) featuring (N × M) different constituents along
two directions of periodicity. L

x1
[c] and L

x3
[u] represent the respective periods of such structures along

the x1- and x3-directions.

 

Figure 2. Schematic diagram of a 2D-SL featuring (N × M) different constituents in the (x1, x3)-
plane. L

x1
[c] = ∑N

u=1 l
u x1
[c] and L

x3
[u] = ∑M

c=1 l
c x3
[u] represent the periods of such general structures

(N �= M) along the x1- and x3-directions, respectively (c ≡ columns and u ≡ lines). The expressions
(l

u x1
[c] × l

c x3
[u] ) stand for the fraction of the (u, c)th constituent in the (x1, x3)-plane with [u] and [c].

related fractions, respectively, of the cth column along the x3-direction and the uth line along

the x1-direction of each constituent, are defined hereafter as f[u]c x3 = l
c x3
[u]

L
x3
[u]

and f[c]u x1 = l
u x1
[c]

L
x1
[c]

,

with l
u x1
[c] the dimension of the uth line along the x1-direction and l

c x3
[u] the dimension of the

cth column along the x3-direction.
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2. Expression of the effective dielectric tensor bounds for 2D-SL of arbitrary symmetry

We do not consider here the pyroelectric and piezoelectric classes of materials [23], that is
we do not have to expand the displacement field D to linear terms in strain3. Then, the basic
relation between the displacement field D and the electric field E through the dielectric tensors
ε can be simplified as

DV = εV EV , (1)

with V equivalent to the notation 2D-SL (x1 ◦ x3) and 2D-SL (x3 ◦ x1) for the effective
material 2D-SL, [u]1D-SL x3 and [c]1D-SL x1 for the effective 1D-SL, and [u]c x3 and [c]u x1,
respectively, for the cth material of each u-line (u = 1–N) and the uth material of each c-column
(c = 1–M), according to the notation given in figure 2. The symbol ◦ represents the symbol
of composition law.

The permittivity tensors εV can be described with a (3 × 3) matrix [24] and the electric
fields DV and EV by (3 × 1) vectors. The boundary conditions regarding the continuity of
the tangential components of E and the normal component of D yield the following matrix
relation (1D-SL x3 that represents all the [u]-SLs along the x3-direction, c = 1–M):

E[u]1D-SL x3 =
M∑

c=1

ξ [u]c x3E[u]c x3 with ξ [u]c x3 =

1/M 0 0

0 1/M 0
0 0 f[u]c x3


 (2)

and

D[u]1D-SL x3 =
M∑

c=1

τ [u]c x3D[u]c x3

with (3)

τ [u]c x3 =

f[u]c x3 0 0

0 f[u]c x3 0
0 0 1/M


 =

(
f[u]c x3

M

)
· (ξ [u]c x3)

−1
,

with

�[l]1 x3E[l]1 x3 = · · · = �[u]c x3E[u]c x3 = · · · = �[l]M x3E[l]M x3

and (4)

�[u]c x3 =

 1 0 0

0 1 0

ε
[u]c x3
13 ε

[u]c x3
23 ε

[u]c x3
33


 .

In such a configuration, relations (2) and (3) according to the fraction term f[u]c x3 in
the matrices ξ [u]c x3 and τ [u]c x3 represent the electrical fields’ (E and D) variations across
one period L

x3
[u] of the 1D-SLx3 as a result of the addition of the proportional corresponding

variations’ fields across the M adjacent layers (figure 1). The first and second lines of �[u]c x3

account for the continuity of the tangential components of E, whereas the third line features
the continuity of the normal component of D as D3 = ε3jEj = εj3Ej due to the Hermitian
symmetry of the ε permittivity in the case of idealized purely anisotropic dielectric materials

3 For piezoelectric and pyroelectric materials, when the electric displacement field D and stress are functions of
independent variables, the field vector D can be expanded in linear terms in electric field E and strain T as the general
relation D = D0 + εE + eT, with ε and e the isothermal dielectric and piezoelectric tensors, respectively. The constant
term D0 in the expansion depends on temperature and leads to pyroelectric effects.
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(that is by considering nonconducting and nonmagnetic materials) which present negligible
energy losses or no absorption4.

The constitutive relation (1) expressed for all the SLs (1D-SL x3), according to
equations (2) and (3), yields

∑M
c=1 τ [u]c x3D[u]c x3 = ε

[u]1D-SL
eff

[∑M
c=1 ξ [u]c x3E[u]c x3

]
. Then,

equation (4) entailing E[u]c x3 = (�[u]c x3)
−1

�[l]1 x3E[l]1 x3 , with the basic relation (1) for
each SLx3 ’s layer, yields the following system of N general matrix expressions of all the
effective dielectric tensors of the N line-1D-SL x3 ([u], figure 2):

{
ε

[u]1D-SL x3
eff

} =
[

M∑
c=1

τ [u]c x3ε[u]c x3(�[u]c x3)
−1

�1 x3

][
M∑

c=1

ξ [u]c x3(�[u]c x3)
−1

�1 x3

]−1

.

(5)

The matrix relation (5) refers to the notion of effective permittivity tensors of 1D-SL which
have been calculated and transformed by different ways into Vegard rules [17, 18]. Then,
it is possible to proceed with this method (figure 2, right) along the other x1-direction while
considering the 2D-SL as an effective material made of N effective line-1D-SL x3 defined
by the system of N equations (5). Such an approach allows us to shape a relevant analytical
matrix expression of the effective dielectric constants for the idealized 2D-SL (x1 ◦ x3) for
u = 1–N:

ε2D-SL (x1◦x3)

eff
=
[

N∑
u=1

τu x1
{
ε

[u]1D-SL x3
eff

}(
�

u x1
eff

)−1
�

l x1
eff

][
N∑

u=1

ξu x1
(
�

u x1
eff

)−1
�

l x1
eff

]−1

,

(6)

with

ξu x1 =

f[c]u x1 0 0

0 1/N 0
0 0 1/N


 ,

τ u x1 =

1/N 0 0

0 f[c]u x1 0
0 0 f[c]u x1


 =

(
f[c]u x1

N

)
· (ξu x1)

−1

and

�
u x1
eff =




ε
[u]1D-SL x3
eff
11

ε
[u]1D-SL x3
eff
12

ε
[u]1D-SL x3
eff
13

0 1 0
0 0 1


 .

(7)

It is important to note that both the first line of the last matrix �
u x1
eff and expression (6)

hinge on the prior system (5). One should note the crucial cast of the notation since regarding
the N equations (5) and equation (6), we first have N �= M. Indeed, �

u x1
eff �= �[u]c x3 , the

matrices ξ , τ and ε are different regarding the two expressions (5) and (6). As an example,
in equation (5), the NM number of (3 × 3) matrices �[u]c x3 depict the continuity of the
tangential components of E along both x1- and x2-directions, and the normal component of
D along the x3-direction (equation (4)) in the (N × M) anisotropic-material-columns; on the

4 For idealized purely anisotropic dielectric materials, the Hermitian condition on the permittivity tensors εij = ε∗
ji

can be simplified as ε
sym
ij = ε

sym
ji on the symmetrical part of the tensors. Materials are not considered optically active

(gyrotropic), otherwise the constitutive relation should contain spatial derivatives of the field and the dielectric tensor
a nonzero imaginary part antisymmetric in the coordinate indices (ε

antisym
ij = −ε

antisym
ji ).
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other hand, in expression (6), the N matrices �
u x1
eff feature the continuity of the tangential

components of E along both x2- and x3-directions, and the normal component of D along the
x1-direction (equation (7)) along the N effective 1D-SL x3 (figure 2). One can note that the
first term

(∑N
u=1 · · · {ε[u]1D-SL x3

eff

} · · ·) of the general expression (6) directly includes the N
equations (5), and this model naturally accounts for the notion of permittivity with inclusions
regarding such topologic 2D-SL. Actually, such a versatile matrix expression (6) stems
from a (x1 ◦ x3) composition reasoning while encompassing all the matrices defined in
equations (2)–(7) related to each column and each effective line-1D-SL x3.

Thereby, in the same way, we can achieve the overall matrix expression of the effective
dielectric constants of an idealized 2D-SL relevant to the composition (x3 ◦ x1); to this end,
consider first the calculus of the M effective column-SLs (1D-SL x1 equivalent to all the
[c]-SLs along the x1-direction) constituting the 2D-SL (figure 2). This first step yields the
system of M general matrix expressions of the effective dielectric tensors of the M effective
column-1D-SL x1 (u = 1–N, [c], figure 2):

{
ε

[c]1D-SL x1
eff

} =
[

N∑
u=1

τ [c]u x1ε[c]u x1(�[c]u x1)
−1

�1 x1

][
N∑

u=1

ξ [c]u x1(�[c]u x1)
−1

�1 x1

]−1

,

(8)

with

ξ [c]u x1 =

f[c]u x1 0 0

0 1/N 0
0 0 1/N


 , τ [c]u x1 =

(
f[c]u x1

N

)
· (ξ [c]u x1)

−1

and (9)

�[c]u x1 =

ε

[c]u x1
11 ε

[c]u x1
12 ε

[c]u x1
13

0 1 0
0 0 1


 .

We can proceed with this method (figure 2, lower part) along the other x3-direction,
considering then the 2D-SL as an effective material made of M effective column-1D-SL x1

defined by the system of the M equations (8). By doing so, we can define (c = 1–M)

ε2D-SL (x3◦x1)

eff
=
[

M∑
c=1

τ c x3
{
ε

[c]1D-SL x1
eff

}(
�

c x3
eff

)−1
�

l x3
eff

][
M∑

c=1

ξ c x3
(
�

c x3
eff

)−1
�

l x3
eff

]−1

,

(10)

with

ξ c x3 =

1/M 0 0

0 1/M 0
0 0 f[u]c x3


 , τ c x3 =

(
f[u]c x3

M

)
· (ξ c x3)

−1

and (11)

�
c x3
eff =




1 0 0
0 1 0

ε
[c]1D-SL x1
eff
13

ε
[c]1D-SL x1
eff
23

ε
[c]1D-SL x1
eff
33


 .

Expression (10) clearly derives from the above-mentioned (x3 ◦ x1) composition rationale,
as it contains all the matrices defined previously.

General analytical expressions (6) and (10) depict the overall concept of bounds regarding
the effective dielectric tensors for SLs that presents two directions of periodicity (2D-SL); they
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Figure 3. Schematic diagram of a 2D-SL featuring only two different constituents (N = M = 2)
and a same period along the two directions, L

x1
[c] = L

x3
[u] = l1 + l2. The matrix εn and ln account

for the dielectric matrix of the constituent n and its dimension along x1 and x3, respectively (n = 1
and 2).

can be seen as a multilayer array structure of alternating (N × M) rectangular dielectric cells
made of anisotropic constituents of arbitrary symmetry:

ε2D-SL (xj ◦xi )

eff
� ε2D-SL

eff
� ε2D-SL (xi◦xj )

eff
(for i, j = 1, 3 or 3, 1). (12)

Eventually, the (3 × 3) matrix relation (12) is applied to each permittivity tensor
component of the 2D-SL ε2D-SL

eff
uv

which are ranging in two exhaustive bounds
[
ε

2D-SL (xj ◦xi )

eff
uv

−
ε

2D-SL (xi◦xj )

eff
uv

]
(for u and v = 1–3).

The nomenclature is pivotal as in the notation regarding relation (12) together with
equations (6) and (10), many matrices � are different, especially �

c x3
eff �= �

u x1
eff �= �[c]u x1 �=

�[u]c x3 ; moreover, matrices such as ξ , τ and ε are also different.

3. Discussion and conclusion

As an example, consider a 2D-SL made of rectangular dielectric bars involving only two
different isotropic materials (N = M = 2). Let there be now the condition Lx1 = Lx3 = L for
a specific 2D-SL with the same periodicity along the x1- and x3-directions as represented in
figure 3. In such a topologic case, many simplifications can be done on the notation. To this
end, we can advantageously define two conditions about the parity of both symbols u (lines)
and c (columns), in order to define the two areas of the special topology shown in figure 3
(a and b �= 0 integers):

area(1): {[∀u[1–N ] and c = (2a + 1)}, that describes the first area in figure 3

and

area(2): {[u = 2b, ∀c[1–M]] with [u = (2a + 1), c = 2b]}
or

{[c = 2b, ∀u[1–N ]] with [c = (2a + 1), u = 2b]} (13)

which are two ways to describe the second area in figure 3.
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Then, the significant simplification l
c x3
[u] ≡ l

u x1
[c] ≡ lj can be carried out entailing f[u]c x3 ≡

f[c]u x1 ≡ fj (figure 3), and ε[u]c x3 ≡ ε[c]u x1 ≡ εj , with

εj =


ε

j

11 0 0

0 ε
j

11 0

0 0 ε
j

11




due to the isotropic nature of both constituents, respectively, for both conditions (13) (that is
into the area(j ), j = 1, 2). As regard to equations (2), (11); (3), (11) and (4), (11), respectively,
we can note that W [u]c x3 ≡ Wj x3 , with W = ξ , τ and �, for area(j ). Such a simplification
leads to (j = 1 and 2)

ξ j x3 =

1/2 0 0

0 1/2 0
0 0 fj


 , τ j x3 =


fj 0 0

0 fj 0
0 0 1/2




and (14)

�j x3 =

1 0 0

0 1 0

0 0 ε
j x3

11


 .

In this way (figure 3), equations (7) and (9) allow us to define X[c]u x1 ≡ Xj x1 with
X = ξ , τ and �, for area(j ) (j = 1, 2):

ξ j x1 =

fj 0 0

0 1/2 0
0 0 1/2


 , τ j x1 =


1/2 0 0

0 fj 0
0 0 fj




and (15)

�j x1 =

ε

j x1
11 0 0
0 1 0
0 0 1


 .

Then, according to equations (5) and (8), featuring the lines- and columns-1D-SL, we
obtain

{
ε

v=x3 or x1
eff

} ≡


ε

[u]
[c] 1D-SL,v≡

{
x3
x1

eff


 =


 2∑

j=1

τ j vεj (�j v)
−1

�1 v




 2∑

j=1

ξ j v(�j v)
−1

�1 v




−1

=





f1ε

1
11 + f2ε

2
11 0 0

0 f1ε
1
11 + f2ε

2
11 0

0 0
(
ε1

11ε
2
11

/(
f1ε

2
11 + f2ε

1
11

))

 for v = x3,



(
ε1

11ε
2
11

/(
f1ε

2
11 + f2ε

1
11

))
0 0

0 f1ε
1
11 + f2ε

2
11 0

0 0 f1ε
1
11 + f2ε

2
11


 for v = x1.

(16)

It is clear that we obtain the canonical Wiener’s bounds [25] for the effective permittivity
as isotropic limiting cases of our formulation. Thus, for 1D-SLs involving only two different
isotropic materials, the general matrix formulations (5) and (8) lead to the classical concept of
permittivity called form birefringence [9–12]. Indeed, such particular 1D-SLs (equation (16))
behave as anisotropic effective materials which exhibit tetragonal 4̄2m symmetry.
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Moreover, in the simplified 2D-SL topologic example, we can simplify the notation
according to the position of the second constituent (figure 3). Then, in equations (6), (7), and
(10), (11), respectively, we can simplify the notation for both c and u even (=2b) as

�
c x3
eff = �2 x3 =


1 0 0

0 1 0
0 0 ε2

11


 and �

u x1
eff = �2 x1 =


ε2

11 0 0
0 1 0
0 0 1


 ,

according to ε
[u]1D-SL x3
eff
11

= ε
[c]1D-SL x1
eff
33

= ε2
11 in equations (7) and (11). Indeed, we can note

that in such a simplified case, all the even lines- or columns-1D-SLs are equivalent to the
second isotropic constituent of the 2D-SL (figure 3).

Moreover, for the odd lines- and columns-1D-SL (c and u odd = (2a + 1)), according to
equation (16) we have, respectively,

�
u x1
eff = �

1 x1
eff =


f1ε

1
11 + f2ε

2
11 0 0

0 1 0
0 0 1




(equation (9)) and

�
c x3
eff = �

1 x3
eff =


1 0 0

0 1 0
0 0

(
ε1

11ε
2
11

/(
f1ε

2
11 + f2ε

1
11

))



(equation (11)), as a characteristic property of the same periodicity (ε1|ε2|ε1|ε2 . . .) for such
2D-SL along the x1- and x3-directions (figure 3).

Then, in the case of 2D-SLs involving only two different isotropic materials (figure 3),
the matrix formulation (equations (6) and (10)) of the effective permittivity tensors’ bounds
leads to the expression

ε

2D-SL (z◦v)≡
{

x1◦x3
x3◦x1

}
eff =


 2∑

j=1

τ j z
{
εv

eff

}(
�

j z

eff

)−1
�1 z

eff




 2∑

j=1

ξ j z
(
�

j z

eff

)−1
�1 z

eff




−1

=







ε2
11(f1ε

1
11+f2ε

2
11)

f1ε
2
11+f1f2ε

1
11+(f2)

2ε2
11

0 0

0 (f1)
2ε1

11 + f1f2ε
2
11 + f2ε

2
11 0

0 0
ε2

11(f1ε
1
11+f1f2ε

2
11+(f2)

2ε1
11)

f1ε
2
11+f2ε

1
11




for z ◦ v = x1 ◦ x3,




ε2
11(f1ε

1
11+f1f2ε

2
11+(f2)

2ε1
11)

f1ε
2
11+f2ε

1
11

0 0

0 (f1)
2ε1

11 + f1f2ε
2
11 + f2ε

2
11 0

0 0
ε2

11(f1ε
1
11+f2ε

2
11)

f1ε
2
11+f1f2ε

1
11+(f2)

2ε2
11




for z ◦ v = x3 ◦ x1.

(17)

One should note that no indetermination occurs regarding the component of the tensor
ε2D-SL

eff
22

= (f1)
2ε1

11 + f1f2ε
2
11 + f2ε

2
11 that accounts for a (x2 ◦ x2) composition law. Conversely,

the other ones lead to the concept of bounds since there are two different ways to shape the
2D-SL via, respectively, the (x1 ◦ x3) and (x3 ◦ x1) compositions laws. One can verify the validity
of the three expressions according to the results ε2D-SL

eff
11

= ε2D-SL
eff
22

= ε2D-SL
eff
33

= ε1
11 when f1 = 1

(f2 = 0, that is considering only one bulk constituent ε1) and ε2D-SL
eff
11

= ε2D-SL
eff
22

= ε2D-SL
eff
33

= ε2
11
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when f2 = 1 (f1 = 0, with only one bulk constituent ε2). These results can be expressed in
the case of two isotropic materials with the notation f1 = f, f2 = 1 − f and ε

j

11 = εj (for j = 1
and 2) on the results εeff x2 = f 2ε1 + (1 − f 2)ε2, and ε2D-SL Lower

eff
� ε2D-SL

eff
� ε2D-SL Upper

eff
,

with ε2D-SL Lower
eff

= ε2 · f ε1+(1−f )ε2

f ε2+f (1−f )ε1+(1−f )2ε2 and ε2D-SL Upper
eff

= ε2 · f ε1+f (1−f )ε2+(1−f )2ε1

f ε2+(1−f )ε1 ,
respectively, called the lower and upper canonical Lichtenecker’s bounds on permittivity [4, 5].
Thus, it is clear that the concept of Wiener’s and Lichtenecker’s bounds directly stems from
our general composition formulation. In this way, the approach given by relationships (6),
(10) and (12) is more global as an overall matrix composition formulation of the concept of
bounds fitted for effective dielectric tensors of SLs with a double periodicity composed by a
multilayer array structure of alternating (N × M) rectangular dielectric cells. Equations (6),
(7), (10) and (11) provide comprehensive analytical formulations intended to unify the notion
of effective dielectric constants for 2D-SL of arbitrary symmetry.

Moreover, we can verify, with the limiting case of a single (that is M = N = 1)
homogeneous anisotropic material, the validity of this formulation. By considering only
one anisotropic cell material with the fractions fc=1 x3 = 1 (with c = 1 the column fixed) and
fc x3 = 0 (with ∀c �= 1, that is without another column), the matrix relation (5) is simplified
(c = 1 to be considered fixed in the summation):{

ε
1D-SL x3
eff

} = [τ 1 x3 ε
1 x3

(�1 x3)
−1

�1 x3 ][ξ 1 x3(�1 x3)
−1

�1 x3 ]
−1

. (18)

The (3 × 3) matrix ε1 x3 in equation (18) represents the permittivity tensors of the single
homogeneous anisotropic material. According to equations (2) and (3) in this particular case,
we can remark that

τ 1 x3 = ξ 1 x3 = Id3×3 =

1 0 0

0 1 0
0 0 1




(M = 1 and fc=1 x3 = 1); then, simplifications lead to
{
ε

1D-SL x3
eff

} = [Id3×3ε
1 x3(�1 x3)

−1

�1 x3 ][Id3×3(�
1 x3)

−1
�1 x3 ]−1 = [Id3×3ε

1 x3(�1 x3)
−1

�1 x3(�1 x3)
−1

�1 x3 Id3×3] = ε1 x3 .
In the same way, equation (6) leads to the relevant result ε2D-SL (x1◦x3)

eff
= ε1 x3 . It is easy

to verify that with the other alternative composition (x3◦x1) (equations (8) and (10)) the result
is the same, that is ε2D-SL (x3◦x1)

eff
= ε1 x3 = ε2D-SL (x1◦x3)

eff
. Then, in such a limiting case (single

homogeneous anisotropic material), we do not have to sum into the matrix relation because
only one cell is to be considered. Then, due to the localization of the cell, it is not necessary
to unfold in the (x1, x3)-plane the alternative composition law and we find that the notion of
bounds (equations (6) and (10)) is naturally degenerated into only one matrix expression ε1 x3

regarding the matrix permittivity of the single anisotropic cell material.
In conclusion, the new approach, based on an alternative composition method, presented

in this paper can deal with the anisotropic nature of materials, that is dielectric tensors and
space fractions. This formulation, taking account of the boundary conditions, yields an
interesting improvement of the concept of effective dielectric tensor bounds and the notion of
form birefringence ascribed to a 2D-SL topology. As demonstrated, the notions of Wiener’s
and Lichtenecker’s bounds directly stem from such a global formulation as isotropic limiting
cases when considering the simplified case of a 2D-SL comprising two different isotropic
materials with the same periodicity in both directions. Moreover, the validity of the general
effective permittivity expressions (6) and (10) has been tested on the limiting case of a single
homogeneous anisotropic material. The general expressions of the dielectric tensor bounds
((6) and (10)) involving, respectively, equations (5) and (8), stress that this matrix formulation
is based on relevant composition laws (x1 ◦ x3) and (x3 ◦ x1); moreover, this formulation is
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based directly on the notion of inclusions due to the discretization approach by cells. Such a
composition law formulation is conveniently fitted to depict more general multi-scale 2D-SLs
that could encompass another 2D-SL located in given rectangular dielectric bars (that is based
on the location of 2D-SLs in some columns’ elements of the general structure 2D-SL). Such
a formulation seems to be adapted to define information on the permittivity tensors and on
particular limiting special cases of the generalized 3D unity cell model like coated inclusion by
using adapted and variable discretization step on the three directions of the 3D-SLs. Moreover,
it is expected that such a generalized approach will be of substantial interest to designing new
integrated components in optical telecommunication based on the form birefringence.
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[15] Bêche B, Porte H, Goedgebuer J P and Fontaine C 1999 IEEE J. Quantum Electron. 35 820
[16] Bêche B, Gaviot E, Grossard N and Porte H 2000 Opt. Commun. 185 325
[17] Djafari Rouhani B and Sapriel J 1986 Phys. Rev. B 34 7114
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